Functional profiling of the Saccharomyces cerevisiae genome

Research output: Contribution to journalJournal articleResearchpeer-review

  • Guri Giaever
  • Angela M Chu
  • Li Ni
  • Carla Connelly
  • Linda Riles
  • Steeve Véronneau
  • Sally Dow
  • Ankuta Lucau-Danila
  • Keith Anderson
  • Bruno André
  • Adam P Arkin
  • Anna Astromoff
  • Mohamed El-Bakkoury
  • Rhonda Bangham
  • Rocio Benito
  • Sophie Brachat
  • Stefano Campanaro
  • Matt Curtiss
  • Karen Davis
  • Adam Deutschbauer
  • Karl-Dieter Entian
  • Patrick Flaherty
  • Francoise Foury
  • David J Garfinkel
  • Mark Gerstein
  • Deanna Gotte
  • Ulrich Güldener
  • Johannes H Hegemann
  • Svenja Hempel
  • Zelek Herman
  • Daniel F Jaramillo
  • Diane E Kelly
  • Steven L Kelly
  • Peter Kötter
  • Darlene LaBonte
  • David C Lamb
  • Ning Lan
  • Hong Liang
  • Hong Liao
  • Lucy Liu
  • Chuanyun Luo
  • Marc Lussier
  • Rong Mao
  • Siew Loon Ooi
  • Jose L Revuelta
  • Christopher J Roberts
  • Matthias Rose
  • Petra Ross-Macdonald
  • Bart Scherens
  • Greg Schimmack
  • Brenda Shafer
  • Daniel D Shoemaker
  • Sharon Sookhai-Mahadeo
  • Reginald K Storms
  • Jeffrey N Strathern
  • Giorgio Valle
  • Marleen Voet
  • Guido Volckaert
  • Ching-yun Wang
  • Teresa R Ward
  • Julie Wilhelmy
  • Elizabeth A Winzeler
  • Yonghong Yang
  • Grace Yen
  • Elaine Youngman
  • Kexin Yu
  • Howard Bussey
  • Jef D Boeke
  • Michael Snyder
  • Peter Philippsen
  • Ronald W Davis
  • Mark Johnston
Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.
Original languageEnglish
JournalNature
Volume418
Issue number6896
Pages (from-to)387-91
Number of pages4
ISSN0028-0836
DOIs
Publication statusPublished - 2002
Externally publishedYes

Bibliographical note

Keywords: Cell Size; Cluster Analysis; Culture Media; Galactose; Gene Deletion; Gene Expression Profiling; Genes, Fungal; Genome, Fungal; Hydrogen-Ion Concentration; Nystatin; Open Reading Frames; Osmolar Concentration; Phenotype; Proteome; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Selection, Genetic; Sorbitol

ID: 19709829