A frontier-orbital view of the initial steps of lytic polysaccharide monooxygenase reactions

Research output: Contribution to journalJournal articleResearchpeer-review

Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that oxidatively cleave the strong C-H bonds in recalcitrant polysaccharide substrates, thereby playing a crucial role in biomass degradation. Recently, LPMOs have also been shown to be important for several pathogens. It is well established that the Cu(II) resting state of LPMOs is inactive, and the electronic structure of the active site needs to be altered to transform the enzyme into an active form. Whether this transformation occurs due to substrate binding or due to a unique priming reduction has remained speculative. Starting from four different crystal structures of the LPMO LsAA9A with well-defined oxidation states, we use a frontier molecular orbital approach to elucidate the initial steps of the LPMO reaction. We give an explanation for the requirement of the unique priming reduction and analyse electronic structure changes upon substrate binding. We further investigate how the presence of the substrate could facilitate an electron transfer from the copper active site to an H2O2 co-substrate. Our findings could help to control experimental LPMO reactions.

Original languageEnglish
JournalDalton Transactions (Online)
Volume53
Issue number13
Pages (from-to)5796-5807
Number of pages12
ISSN1477-9234
DOIs
Publication statusPublished - 2024

    Research areas

  • Mixed Function Oxygenases/chemistry, Hydrogen Peroxide, Copper/chemistry, Polysaccharides/metabolism, Oxidation-Reduction

ID: 389361687