Combined sialic acid and HDAC inhibitor treatment upregulates the neuroblastoma antigen GD2

Research output: Contribution to journalJournal articleResearchpeer-review

  • Renske J E van den Bijgaart
  • Michiel Kroesen
  • Melissa Wassink
  • Ingrid C Brok
  • Esther D Kers-Rebel
  • Louis Boon
  • Torben Heise
  • Monique van Scherpenzeel
  • Dirk J Lefeber
  • Thomas J Boltje
  • Martijn H den Brok
  • Peter M Hoogerbrugge
  • Christian Büll
  • Gosse J Adema

Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is only sparsely expressed on healthy tissue. GD2 is a primary target for the development of immunotherapy for neuroblastoma. Immunotherapy with monoclonal anti-GD2 antibodies has proven safety and efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. Strategies to modulate GD2 expression in neuroblastoma could further improve anti-GD2 targeted immunotherapy. Here, we report that the cellular sialylation pathway as well as epigenetic reprogramming strongly modulate GD2 expression in human and mouse neuroblastoma cell lines. Recognition of GD2 by the 14G2a antibody is sialic acid-dependent and was blocked with the fluorinated sialic acid mimetic Ac53FaxNeu5Ac. Interestingly, sialic acid supplementation using a cell-permeable sialic acid analogue (Ac5Neu5Ac) boosted GD2 expression without or with minor alterations in overall cell surface sialylation. Furthermore, sialic acid supplementation with Ac5Neu5Ac combined with various histone deacetylase (HDAC) inhibitors, including Vorinostat, enhanced GD2 expression in neuroblastoma cells beyond their individual effects. Mechanistic studies revealed that Ac5Neu5Ac supplementation increased intracellular CMP-Neu5Ac concentrations, thereby providing higher substrate levels for sialyltransferases. Furthermore, HDAC inhibitor treatment increased mRNA expression of the sialyltransferases GM3 synthase (ST3GAL5) and GD3 synthase (ST8SIA1) of which both are involved in GD2 biosynthesis. Our findings reveal that sialic acid analogues and HDAC inhibitors enhance GD2 expression and could potentially be employed to boost anti-GD2 targeted immunotherapy in neuroblastoma patients.

Original languageEnglish
JournalThe Journal of Biological Chemistry
Pages (from-to)4437-4449
ISSN0021-9258
DOIs
Publication statusPublished - 2019
Externally publishedYes

Bibliographical note

Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

ID: 212250178