The structure and characteristic scales of molecular clouds

Research output: Contribution to journalJournal articlepeer-review

Documents

  • aa38849-20

    Final published version, 4.67 MB, PDF document

  • Sami Dib
  • Sylvain Bontemps
  • Nicola Schneider
  • Davide Elia
  • Volker Ossenkopf-Okada
  • Mohsen Shadmehri
  • Doris Arzoumanian
  • Frederique Motte
  • Mark Heyer
  • Nordlund, Åke
  • Bilal Ladjelate

The structure of molecular clouds holds important clues regarding the physical processes that lead to their formation and subsequent dynamical evolution. While it is well established that turbulence imprints a self-similar structure onto the clouds, other processes, such as gravity and stellar feedback, can break their scale-free nature. The break of self-similarity can manifest itself in the existence of characteristic scales that stand out from the underlying structure generated by turbulent motions. In this work, we investigate the structure of the Cygnus-X North and Polaris Flare molecular clouds, which represent two extremes in terms of their star formation activity. We characterize the structure of the clouds using the delta-variance (Delta -variance) spectrum. In the Polaris Flare, the structure of the cloud is self-similar over more than one order of magnitude in spatial scales. In contrast, the Delta -variance spectrum of Cygnus-X North exhibits an excess and a plateau on physical scales of approximate to 0.5-1.2 pc. In order to explain the observations for Cygnus-X North, we use synthetic maps where we overlay populations of discrete structures on top of a fractal Brownian motion (fBm) image. The properties of these structures, such as their major axis sizes, aspect ratios, and column density contrasts with the fBm image, are randomly drawn from parameterized distribution functions. We are able to show that, under plausible assumptions, it is possible to reproduce a Delta -variance spectrum that resembles that of the Cygnus-X North region. We also use a "reverse engineering" approach in which we extract the compact structures in the Cygnus-X North cloud and reinject them onto an fBm map. Using this approach, the calculated Delta -variance spectrum deviates from the observations and is an indication that the range of characteristic scales (approximate to 0.5-1.2 pc) observed in Cygnus-X North is not only due to the existence of compact sources, but is a signature of the whole population of structures that exist in the cloud, including more extended and elongated structures.

Original languageEnglish
Article number177
JournalAstronomy & Astrophysics
Volume642
Number of pages18
ISSN0004-6361
DOIs
Publication statusPublished - 19 Oct 2020

    Research areas

  • stars: formation, ISM: clouds, ISM: general, ISM: structure, galaxies: star formation, galaxies: ISM, STAR-FORMATION RATES, INTERSTELLAR H-I, POWER SPECTRUM, DELTA-VARIANCE, TURBULENCE, HERSCHEL, EMISSION, CLUSTERS, YOUNG, SIMULATIONS

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 251941014