Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation

Research output: Contribution to journalJournal articleResearchpeer-review

  • Gerard C L Wong
  • Jyot D Antani
  • Pushkar Lele
  • Beiyan Nan
  • Marco Julian Kühn
  • Alexandre Persat
  • Jean-Louis Bru
  • Albert Siryaporn
  • Jacinta Conrad
  • Francesco Carrara
  • Yutaka Yawata
  • Roman Stocker
  • Yves Brun
  • Greg Whitfield
  • Calvin Lee
  • Jaime de Anda
  • William C Schmidt
  • Ramin Golestanian
  • George A O'Toole
  • Kyle Floyd
  • Fitnat Yildiz
  • Shuai Yang
  • Fan Jin
  • Masanori Toyofuku
  • Leo Eberl
  • Nomura Nobuhiko
  • Lori Zacharoff
  • Mohamed Y El-Naggar
  • Sibel Ebru Yalcin
  • Nikhil Malvankar
  • Mauricio D Rojas-Andrade
  • Allon Hochbaum
  • Jing Yan
  • Howard A Stone
  • Ned S Wingreen
  • Bonnie Bassler
  • Yilin Wu
  • Haoran Xu
  • Knut Drescher
  • Jörn Dunkel

Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behaviour. Bacterial biofilms are more than the sum of their parts: Single cell behaviour has a complex relation to collective community behaviour, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: We highlight work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signalling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labour.

Original languageEnglish
JournalPhysical Biology
Volume18
Issue number5
Number of pages50
ISSN1478-3975
DOIs
Publication statusPublished - 2021

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 255447679