Distribution of concurrent training sessions does not impact endurance adaptation

Research output: Contribution to journalJournal articleResearchpeer-review

Objectives: Optimized concurrent training regimes are warranted in physical training of military-, law enforcement- and rescue-personnel. This study investigated if four 15-min endurance training sessions weekly improve aerobic capacity and performance more than one 60-min endurance session weekly during the initial phase of a Basic Military Training program.

Design: A randomized training intervention study with functional and physiological tests before and after the intervention.

Methods: Military conscripts (n=290) were randomly allocated to three groups completing 9 weeks training. Weekly training consisted of four endurance and four strength training sessions lasting 15min each ('Micro-training': MIC); one strength and one endurance session lasting 60min each ('Classical-training': CLA) or two 60min sessions of standard military training ('Control-training': CON).

Results: Both 12-min (∼7-10%) and shuttle run performance (∼35-42%) improved (P≤0.001) similarly in all groups. Likewise, functional 2-min maximal repetition exercise capacity increased (P≤0.05) similarly in all groups (Lunges ∼17-24 %; PushUp ∼10-20%; AbdominalFlexions∼21-23%). Peak oxygen uptake changes depended on group (P≤0.05) with increases (P≤0.01) in MIC (7±7%, n=23) and CON (12±18%, n=17) and no changes in CLA. Maximal m. vastus lateralis citrate synthase activity decreased 14±26% (P≤0.001, n=18) in CLA. Likewise, maximal m. vastus lateralis 3-hydroxyacyl-CoA dehydrogenase activity decreased 8±17% in MIC (n=28) and 14±24% in CLA (n=18).

Conclusions: Four 15-min endurance training sessions weekly improves running performance and strength-endurance similarly to one 60min session. Peak oxygen uptake only increases with more than one endurance session weekly and leg muscle oxidative capacity appears reduced after basic military training.

Original languageEnglish
JournalJournal of Science and Medicine in Sport
Volume24
Issue number3
Pages (from-to)291-296
Number of pages6
ISSN1440-2440
DOIs
Publication statusPublished - 2021

Bibliographical note

Copyright © 2020 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

    Research areas

  • Faculty of Science - Low volume training, Training distribution, Capillaries, Metabolic enzyme activity, Military

ID: 249426003